Математика как естественная наука
Dec. 25th, 2014 04:05 am![[personal profile]](https://www.dreamwidth.org/img/silk/identity/user.png)
Потратил полночи и получил огромное удовольствие, следуя за мыслью
schwalbeman и его оппонентов и собеседников.
Математика как естественная наука
Математика как естественная наука 2
Основная полемика разворачивается с философом Болдачевым, который на протяжении многих лет искусно и последовательно отстаивает в ЖЖ позицию, что математика -- не наука (в том смысле, что математические теории не фальсифицируемы, так как изучают идеальные конструкции внутри самой математики). Несколько лет назад я с ним тоже полемизировал на эту тему в журнале у И-П, но на куда более примитивном уровне (мне тогда казалось, что этого достаточно). Наверное, рано или поздно он каждого попытался обратить в свою веру :)
Основной тезис schwalbeman (интересно, это переводится как заглатывающий?) состоит в том, что математика изучает математические объекты точно так же, как физика -- объекты реального мира. Математика, как и физика, строит математические модели для изучения свойств объектов, и соответствие между моделями и объектами отнюдь не тождественное. Различие между математикой и физикой только в природе объектов. Поэтому если физика естественная наука -- то и математика такая же естественная. Уточнению деталей этой аналогии и ее применимости посвящена основная дискуссия.
Кстати, это понимание полностью согласуется с тем, что приводит Манин в книге "Математика как метафора": "мы изучаем идеи, с которыми можно обращаться так, как если бы они были реальными предметами"
P.S. Спасибо
ninaofterdingen за наводку на интереснейший журнал. Как же я его раньше-то пропустил!?
![[livejournal.com profile]](https://www.dreamwidth.org/img/external/lj-userinfo.gif)
Математика как естественная наука
Математика как естественная наука 2
Основная полемика разворачивается с философом Болдачевым, который на протяжении многих лет искусно и последовательно отстаивает в ЖЖ позицию, что математика -- не наука (в том смысле, что математические теории не фальсифицируемы, так как изучают идеальные конструкции внутри самой математики). Несколько лет назад я с ним тоже полемизировал на эту тему в журнале у И-П, но на куда более примитивном уровне (мне тогда казалось, что этого достаточно). Наверное, рано или поздно он каждого попытался обратить в свою веру :)
Основной тезис schwalbeman (интересно, это переводится как заглатывающий?) состоит в том, что математика изучает математические объекты точно так же, как физика -- объекты реального мира. Математика, как и физика, строит математические модели для изучения свойств объектов, и соответствие между моделями и объектами отнюдь не тождественное. Различие между математикой и физикой только в природе объектов. Поэтому если физика естественная наука -- то и математика такая же естественная. Уточнению деталей этой аналогии и ее применимости посвящена основная дискуссия.
Кстати, это понимание полностью согласуется с тем, что приводит Манин в книге "Математика как метафора": "мы изучаем идеи, с которыми можно обращаться так, как если бы они были реальными предметами"
P.S. Спасибо
![[livejournal.com profile]](https://www.dreamwidth.org/img/external/lj-userinfo.gif)
no subject
Date: 2014-12-27 02:23 pm (UTC)В том, что модели можно плодить абсолютно без экспериментальных данных, с последующей надеждой их получить, или даже без неё.
В экономиксе это делается сплошь и рядом, да и в физике тоже частенько - взять хотя бы мультивёрс. Но, как я уже говорил Вам ранее, штамповка моделей без дальнейшего соотнесения с экспериментом - это не естественнонаучная деятельность, даже если занимаются ей физики. То есть, такой вот "неестественнонаучный урматфиз".