2015-09-18

kaipa: (Default)
2015-09-18 04:37 pm

Еще один шаг

Почти год назад наколеночная нейронная сеть научилась играть в шахматы просто имея массив готовых игр. В опубликованной недавно статье (магистрская работа) описывается шахматная программа, использующая  нейронную сеть для оценки позиции и оптимизации перебора. По утверждению авторов программа играет в силу мастера.

Хотя это звучит круто-круто, на самом деле это круто, но не настолько :) Так как начальной точкой оптимизации была программа, основанная на традиционных алгоритмах, которая уже играла чуть хуже кандидата в мастера. Нейронные сети использовались для ее улучшения и замены некоторых алгоритмических частей на обучаемые.

Статья интересная, и ее стоит прочитать всем, кто интересуется этой темой. Нейронная сеть была использована для двух разных целей.

Для начала, авторы поставили задачу оценки позиции при помощи нейронный сети. Они построили и натренировали сеть так, чтобы получить функцию оценки максимально близкую к известной функции оценки Stockfish (есть массив позиций оцененных Stockfish). А потом проверили на позициях из Strategic Test Suite. Натренированная нейронная сеть смогла оценивать позиции на уровне лучших шахматных программ, не имея практически никаких априорных знаний -- только опыт обучения!

Следующая логичная задача, которую поставили перед собой авторы -- это использовать нейронную сеть для предсказания лучшего хода. Здесь они использовали нестандартный, как мне кажется, подход для определения глубины поиска: отсечение по вероятности выиграть. То есть для каждой позиции вычисляется вероятность выигрыша, перебор идет в сторону позиций с более высокой вероятностью (или отсечение низких). Это дает преимущество при оценке длинных "вынужденных" комбинаций, когда в позиции не очень много ходов, но ее надо просмотреть глубоко. Нейронная сеть была натренирована для предсказания этих вероятностей. По сравнению с вариантом вычисления вероятностей "в лоб" (чисто через оценку позиций), нейронная сеть "угадывала" наилучший ход несколько чаще, то есть и в этом случае удалось повторить (в смысле результата) и превзойти закодированный алгоритм!

В обоих случаях существующий жесткий алгоритм был заменен гибкой и обучаемой нейронной сетью, то есть при дальнейшем обучении (на лучших данных или в режиме self-play) можно ожидать еще большего роста качества игры.

Это, конечно, не так круто, как "научиться играть" по партиям, но все равно впечатляет.
kaipa: (Default)
2015-09-18 06:57 pm

Серпантины

Любите ли вы горные серпантины так, как их люблю я?



Не знаю, как чувствовали себя мои пассажиры -- кто-то спал, кто-то пищал, кто-то терпел и фотографировал -- но водителю ехать, когда не попадались встречные автобусы, было в кайф.
+7 )